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Abstract A class of fully nonlinear third-order partial differential equations (PDES) is 
considered. This class contains several examples which have m t l y  appeared in the literahue 
and for which rather unusual travelling-wave solutions have been given. These solutions consist 
essentially of sums of exponentials; we trace the occurrence of these exponentials baclr to the 
existence of a h e a r  subequation which appears as a factor in the tmvelling-wave reduction. In 
addition, we consider the Painlev6 analysis of this set of equations. both for the original PDE and 
also for reductions to ordinary differential equations (ODES). No equation in the class considered 
swives the combination of PDE and ODE tests. Also, an equation in the class considered which 
is knawn to be inte&k is shown to possess only the 'weak Painleve' propem. Our analysis, 
therefore, confirms the limitations of the Painlev6 test as a test for complete inte&dity when 
applied to fully nonlinear PDES. 

1. Introduction 

We consider the class of fully nonlinear third-order partial differential equations (PDEs) 

uu,,, + bU,U, - P2W + l)UU, = ut - EUxxr + 2Ku, 

(ua + @UX)(UXZ - p 2 u )  = 

(1) 
or, equivalently, 

(2) 
where a = a/ax. Examples of equations of this form which have been discussed recently 
are, up to some rescalings, the Camassa-Holm (CH) equation [l, 21 

(3) 

(4) 

(5) 

- EUxxf + 2KUx 

uuz,z,x + 2uxuxx - 3uux 

uum + 3U,U,, - vu, = U, - u,,t +U, 

UU,, + 3u,u, + vu, = U,. 

ut - uzx, + 2KUx 

the Fomherg-Whitham (nv) equation [3-51 

and the Rosenau-Hyman (RH) equation 161 

These correspond respectively to the choices of parameter values: 
cn: E =  1 p 2 =  1 p = 2  
pW: p 2 = i  @ = 3  K = I  2 

4 

RH: .$CO p 2 = - ! .  4 @ = 3  K = 0. 
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A Lax pair and bi-Hamiltonian structure have been given for the CH equation [I], and 
so this equation is assumed to be completely integrable. The FW equation was introduced 
in order to discuss qualitative features of wave breaking and it admits a wave of greatest 
height 131. The RH equation arose in the study of the effect of nonlinear dispersion in the 
formation of patterns in liquid drops 161. 

Rather unusual travelling-wave solutions of these equations have been given and their 
interaction propehes analysed. For ai, in the case K = 0, the so-called ‘peakon’ 

(6) U = Ce-lr-c~l 

has been given as a solution [l]. The interaction of such solutions is discussed in [2]. For 
FW, the wave of greatest height arises as a peaked limiting form of the travelling-wave 
solution [5]. When FW is written in the above form, this limiting case is 

U = $e-+$ll. (7) 
In the case of RH, the ‘compacton’ solution 

-~ccos’(:(x - e t ) )  [ x  - CtI < 2% 
U = (  0 Ix - CtI  > 2z (8) 

bas been found [6]. These are solitary waves of finite wavelength, interactions of which 
produce a ripple of low amplitude compacton-anticompacton pairs [6]. 

All of the above solutions consist essentially of sums of exponentials; away from any 
discontinuities in their derivatives they are no more than the solutions of a linear equation. 
In this paper we locate this linear equation as a factor in the travelling-wave reduction. In 
fact for some examples, such as CH, we give a far more striking factorization which occurs 
at the PDE level. 

We also consider the Painlev6 analysis of equation (1). We find that the usual PDE 
test cannot be applied to (1) for certain ranges of parameter values because of problems in 
finding the dominant terms. We show how these problems can be overcome. 

We then perform a Painlev6 analysis of reductions of (1) to ordinary differential 
equations (ODES). For these reductions, use is made of known classifications and also 
of the (classical) a-method. This analysis of ODE reductions proves more restrictive than 
does the PDE test. 

Of course an ODE reduction cannot contain more information than the original PDE. For 
ODEs there is a properly defined Painlev6 property, together with classifications of ODEs 
with this property, and a variety of methods providing necessary conditions. However, for 
PDEs, use is usually made of a single test only. 

In addition we show that the integrable CH does not pass the Painlev6 PDE test, but 
instead possesses only the ‘weak Painlev6 property. However, FW is also shown to have 
this weak Painlev6 propem. Our analysis, therefore, confirms the l i t a t ions  of the Painlev6 
test when applied to fully nonlinear PDEs. 

The layout of this paper is as follows. Sections 2 and 3 deal with the factorization 
of our equation and with the integration of the travelling-wave reduction. Section 4 is 
concerned with the Painlev6 analysis of (1). This begins with a description of the Painlev6 
tests, and then continues to consider the application of the Painlev6 PDE test and of the 
Ablowitz-Ramani-Segur (ARS) Painlev6 test. We are able to give a complete list of all 
equations of the form (1) which have travelling-wave reductions which have the Painlev6 
property; for these examples we then consider further ODE reductions. No equation in the 
class considered survives our Painlevd analysis. Finally, section 5 is devoted to a discussion 
and conclusions. 
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2. Solutions from linear equations: factorization 

We begin by rewriting our equation (1) as 

( u a + g u , + ~ a , ) ( u , - p ~ ~ + ~ ) - ( 1 - ~ p ~ ) ~ , - ( ~ ~ + g ~ ) ~ ,  = O  (9) 
where a, = a/at  and 8 is an arbitrary constant. 

acting on a linear equation 
We then see that for €p2 = 1 our PDE admits a ‘factorization’ as a differential operator 

(ua + gu, + car)(uu - p 2 u  + 6) = o (10) 

(1 1) 

provided that 
2 K  +f?6 = 0. 

Thus, for any non-zero p we can always find a 6 such that the PDE (1) can be Written as in 

There is a similar factorization for the travelling-wave reduction of (1) which does not 
(10). 

require cp2 = 1. Putting 

U ( x ,  t )  = f(5) 5 = x - Ct (12) 
we obtain from (9) 

(13) 

(14) 

.. .~ 
[(f - “’z + M (fit - P 2 f  + 6) + [c(l - €P2)  - 2K - BSlff = 0 d l  . 

. , ,  

. .  where fF = dfjde. So we see that the travelling-wave reduction factorizes as 

[ ( f - € C ) z  d l  + B f i  ( f i r  - P 2 f + 6 )  = o  
provided that 

C(1 - €p2)  - 2 K  - 06 = 0. ( 1 3  
So for any non-zero p ,  and for any choice of E and p2 ,  we can always find a 6 such that 
the travelling-wave reduction of (1) can be written in the form (14). ~ 

Assuming p # 0 we then find the following solutions of (1). 

Case 1. €p2 = 1 and 2~ + g8 = 0 
6 U = a(t)e-P” + b(t)epx + - 

P 2  
where a( t )  and b(t)  are arbitrary functions oft .  

Case 2. c(1 - ep2)  - ( 2 ~  + g 6 )  = 0 
6 

where A and B are arbitrary constants. 

U = Ae-d + BePB + - = x - c1 
P 2  

For any non-zero ,9 the above ‘factorizations’ can always t: formed. Note that for 
6p2 # 1 it is by including the constant 6 that we are able to ver waves of different 
speeds c. Of course, (10) and (14) have more general solutions than (16) or (17), i.e. 
solutions of the full equation and not just of the linear subequation. 

The above solutions are non-hivial, although in general they will be unphysical. 
However, for p purely imaginary-for example RH-they are bounded (and of course 
periodic). 
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2. I. Eramples 

In the.case of CH we have from (10) 

C Gilson and A Pickering 

(ua +2u, + a,)(u, - U - K )  = o 

U = a(t)e-x + b(t)C - K. 

U = Ae-e + Be6 - K 

(18) 

(19) 

and from (16) the corresponding solution 

If we take a@) = Ae" and b(t) = Be-CL then this becomes 

(20) 
(which may also be obtained from (17)). The peakon (6) can be understood to be a composite 
of the two exponentials which appear in (20). The structure of (6) guarantees zero boundary 
conditions. However, the price paid for this is a discontinuous first derivative. Consequently, 
the 'peakon' (6) is not a strong solution of cH, whereas (19)-for any a@), b(t)-is. 

For FW and RH we have the factorization (14) of the travelling-wave reduction. For FW 
we obtain from (17) the solution 

U = A e d  +Bei t  + c -  5 3 '  (21) 
The peaked l i t  (7) can be understood to be a composite of the two exponentials which 
appear in (21). In fact, both (6) and (7) are properly understood as limiting cases of 
travelling-wave solutions under an assumption of zero boundary conditions. We say more 
about this in the next section. 

If we now consider RH, we obtain from (17) the solution 

U = 2 sin($() + B c o s ( ~ ~ )  - $c (22) 

where 2, B are arbitrary constants. 
The choice 2 = 0, B = -;c then gives 

(23) 
The compacton (8) consists of a single lump of this function, and remains a strong solution 
of RH since the latter can be written as [6] 

(24) 

and (8) is such that U 2  has everywhere three continuous derivatives. This compacton is 
not, of course, a solution of the hear subequation occurring in (14). 

Away from discontinuities in their derivatives, the rather unusual travelling-wave 
solutions previously given to equations of the form (1) are no more than the solutions 
of a linear equation. We have shown that the linear equation arises as a 'factor' in the 
travelling-wave reduction. 

8 2 1  U = -7ccos 

(fU2),,, + (qu2)x = U, 

3. RaveJJing-wave reduction 

The ODE obtained from the travelling-wave reduction (12) may be integrated to yield 

(f - EC)& + i ( p  - I)$ - ip2@ + l ) f2+ (C - 2~)f + A = 0 (25) 
where A is a constant of integration. Equivalently, 

F F ~ ~  = - ~ ( B - ~ ) F : + A ~ F * + A ~ F + A ~  (26) 
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where F = f - cc and 

This then gives, for fl  # - l , O ,  1, 
2 + BF'-@ 2 

A2FZ + - A I F  + - 2 F2 - - 
6 - p + 1  B B - 1  

where B is a second constant of integration. For the cases ,9 = -1.0 and 1 we obtain 

F: = -2A1F - Ao + BFZ (31) 

F : = 2 A 2 F 2 + 2 A 1 F l 0 g ( F ) - 2 A 0 + B F  (32) 

F;= A2F2+2A1F+2A010g(F)+ B (33) 

respectively, where each A; is to be evaluated at the particular choice of ,9, and we have 
used in (31) the fact that A2 = 0 for ,B = -1. The solution of the travelling-wave reduction 
can, therefore, always be reduced to a quadrature. 

3.1. Limiting solutions 

Let us now consider the travelling-wave reductions of CH and FW, i.e. 

(f - c)$ = f2(f - c + 2K) - 2 A f f  D (34) 
(35) D = B + 2Ac - 2 K 2  

and 

(36) 
(37) 

2 2 - 1  2 (f - C) fc - af ((f - CY - (Zf - ~ c ) ( c  - $1) - Afz + 2Acf + D . 
D = B - A c  2 +gc  1 3  -ac4  

respectively. For both of the above, an assumption that f and its derivatives vanish as 
5 --f +too gives A = D = 0. 

To obtain the 'peakon' (6) one takes the solution of (34) in the case A = D = 0, and 
lets K + 0 [2]. The simplest way to see this is to note that when A = D = 0 and K = 0, 
quation (34) becomes 

(38) 

and that one can take as a solution a composite of two exponentials provided that at the 
discontinuity in the derivative we take the amplitude f(0) = c. 

Similarly for the peaked limiting solution (7) of pw, one a e s ,  the solution of (36) in 
the case A = D = 0, and lets c --f 4/3 [5]. For A .= D = 0 and ,c = 4/3 equation (36) 
becomes 

(f - c)t$ - fZ) = 0 

(39) 
and again, one can take as a solution a composite of two exponentials provided that at the 
discontinuity in the derivative we take &e amplitude f(0) = c = 4/3. 

In this way, it is easy to see the relationship between the solutions (20) and (21), and 
the limiting cases of the travelling-wave solutions (6) and (7). 

2 2  (f - c) (f* - if2) = 0 
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3.2. Galilean invariance and further reductions 

The condition for (1) to remain invariant under the change of variables 

C Gilson and A Pickering 

is 
2 (41) P (B + 1)6 - 1 = 0. 

When the transformation (40) does not leave equation (1) invariant, it can be used to remove 
the term ~ K U ~  from the right-hand side of (1). This is done by choosing y to be a solution 
of 

[pz(B + l )E  - I ] y  + 2K = 0. (42) 
Thus, for example, in any equation of the form (1) with E = 0 we may set K = 0, if this is 
not already the case. 

For our three examples, CH and RH are not Galilean invariant, but FW is. Thus for CH 

there is a one-to-one correspondence between the solutions for K = 0 and the solutions for 
K # 0, although this correspondence involves a change in boundary conditions. 

A consequence of having K = 0 in (1) is that this equation then admits the scaling 
symmetry 

Thus, for any equation (1) with K = 0 (or for which because of the lack of Galilean 
invariance can be transformed onto such an equation) we have in addition to the usual 
translation symmetry, which leads to the travelling-wave reduction, the symmetry (43), 
which then gives the reduction 

When equation (1) is Galilean invariant (and for any value of K )  we also obtain, using 
the direct method of Clarkson and Kruskal [7] ,  the reduction 

U ( x ,  t )  = - @ z t  + b) + W ( z )  z = x + (at' + bt + d )  (45) 
where a ,  b and d are constants. Thus, in addition to the travelling-wave reduction we always 
have at least one other reduction. 

4. Painlev6 analysis 

4.1. The Painleve' tests 

Before turning to the Painlev6 &alysis of equation (l), we first give a description of the 
various Painlev6 tests, and of their relationship to the complete integrability of a PDE. 

The connectionbetween complete integrability and the Painlev6 property was first noted 
by Ablowitz and Segur [SI, who observed that similarity reductions of nonlinear PDES 
solvable by an inverse scattering transform (ET) gave rise to nonlinear ODES where the 
only movable singularities are poles. Joined by Ramani, they went on to formulate the 
Ablowitz-RamaniSegur (ARS) conjecture 19, IO] (see also Hastings and McLeod [ll]): 

Every ODE obtained as a similarity reduction of a completely integrable 
PDE is of P-type, perhaps after a change of variables. 
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It is this conjecture, taken here at face value, which forms the basis of the ARS Painlev6 
test, this being a test of PDES for complete integrability. ARS defined an ODE to be of ‘P- 
type’ when the only movable singularities of any of its solutions are poles; a singularity is 
movable when its location depends on initial conditions (i.e. on constants of intesation). 

However, recent advances-in particular the recovery of a Lax pair [12], though of an 
unusual type, for an ODE with a movable natural boundary [13-15]--suggest that single- 
valued movable singularities other than poles should be allowed. This then leads us back 
to the original Painlevd property [16,171: 

An ODE has the Painlev6 property when its general solution is-free of 
movable branched singularities. 

It is worth remarking here that Painlev6 hid allow unbranched movable essential 
singularities, and that one of the second-order equations with the Painlevt property that 
he lists in [17] does have such a singularity. Of course, if we concentrate on the general 
solution, asking that ODE reductions of PDEs have the Painlev.6 property rather ‘than just be 
of P-type, simply broadens the class of equations to be considered. 

Thus, when applying the ARS Painlevt test, we check all similarity reductions to ODES 
for the Painlev.6 property. For certain classes of equations, classifications of ODES with the 
Painlev6 property exist. If our reduction falls within such a class, then we can check to 
see whether it occurs in the corresponding classification. If the equation does not fall into 
a class for which such a classification exists, then we have to resort to other methods. One 
such method is the ARS algorithm [9,10], which, after Kowalevski [18,19], seeks a solution 
as an expansion about a movable pole. Other methods by which we may test an ODE for 
the Painlev6 property are the so-called a-method, due to Painlevd [16], and the method of 
Bureau [ZO]. All of these methods provide necessary conditions for an ODE to have the 
Painlev6 property. 

In order to overcome the need to obtain all the similarity reductions of a PDE to ODES, 
Weiss;Tabor and Camevale (WTC) proposed a test of the single-valuedness of solutions’of 
a PDE which could be applied directly to the PDfi [21]. This constituted a direct extension 
of the ARS algorithm. However, in going from ODES to PDES there are two observations 
that must be taken into account. The first of these is that the main difference between an 
analytic function of several complex variables XI. . . . , x,?, and an analytic function of one 
complex variable, is that its non-removable singularities are not isolated; instead they occur 
upon analytic manifolds of (real) dimension 2s - 2 [221. The second observation is that 
characteristic singular manifolds must be excluded from consideration, since even linear 
PDEs may exhibit branching along characteristics [23]. Necessary conditions for a PDE to 
have the Painlev6‘property are then provided by the WTC Painlev6 test 1211. 

Given a PDE, for example in U = U(x,  f) ,  this test consists of seeking a solution as an 
expansion 

m 
I 

U = @ ~ ( ~ , t ) C ~ ~ ( ~ , t ) ~ j ( ~ , t j  (46) 
j=o 

in the neighbourhood of a non-characteristic movable singular manifold @(x, 1) = 0. 
Such an analysis first requires a choice of expansion family. This is a choice of leading- 

order exponent p .  leading-order coefficient U,, and dominant terms k[U]. For each family 
there is a set of indices R = (rj , . . . , rN) which give the values of j for which arbitrary 
data should be introduced in (46). Following the tepinology introduced in [9,10], these 
indices are often referred to as ‘resonances’. A choice of family is, therefore, given as 

p UO &U] U ~ . = f r l ,  ..., rN1 (47) 
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where U is the singularity-order of &U] when U is given by (46). 
A perturbative extension of the WTC test 1241 allows for each family the construction of 

a solution with arbitrary data corresponding to every index. This then gives the following 
necessary conditions for a PDE to have the Painlevt property. For any family which 
represents either the general or a particular solution p must be integer; the indices must 
be distinct integers; and all compatibility conditions corresponding to each index must be 
satisfied. 

For any 'maximal' family (when the number of indices N is the same as the order of 
the equation) this perturbative analysis gives a local representation of the general solution. 
We have a program 1251 with which to cany out a generalized version of this perturbative 
test; this was used to carry out all such calculations presented herein. 

C Gilson and A Pickering 

4.2. Application of the Painlev6 PDE test 

We begin by considering the application of the Painlev6 PDE test to (I). In doing so we use 
in (46) the ansatz [26], i.e. 

q x ,  t )  = @ ( x ,  t )  = x + *(t)  Uj(X,t)  = Uj(t)  

to simplify the calculations. The characteristics of (1) are given by 

(48) 

and so (1) has Q(x ,  t )  = t - to = 0 as, at least, a double characteristic. The ansatz (48), 
therefore, explicitly excludes such characteristic manifolds from being considered as the 
singular manifold about which the expansion (46) is made; remember that characteristic 
singularities are to be disregarded when determining whether or not a PDE has the Painlev6 
property. This also means that although the arbitrary functions a(t)  and b(t)  in (19) can be 
assigned whatever singularity structure we likkncluding branching-this is not sufficient 
to claim that CH does not have the Painlev6 property. 

We now turn to the determination of possible expansion families (47). Since we are 
interested primarily in maximal families, we make the requirement that at least one of the 
Kid-order derivatives in (1) contributes to the dominant terms &U]. We also ask that the 
resulting expansion is not simply Taylor, or a special case thereof. This then gives us two 
possible families. 

The first of these is 
2 

p = -  U0 m1 = ~ U X ,  + B U J J X Z  
B + 1  

(50) 

(U, is arbitrary), for which the following dominance conditions must hold 

6 = 0  p < - l o r l # p > O  (51) 
6#0 p<-1. (52) 

These conditions arise from the requirement that the terms &U] actually be dominant. 
They are already dominant on the left-hand side of (1). so we only need to wony about the 
right-hand side. In the case 6 = 0 this means that they must dominate over U, and ~ K L I ~ ,  
and in the case E # 0 they must dominate over -cUxxr. 
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In the special case E = 0 we also have the second family 

k[u] = uux.rx 3- pu,u,, - U? - 2KUx @' + 2 K  
p = 2  uo=- 

U = 1 

Here, the dominant terms given are those which contribute to the determination of the 
indices R; it is, however, only the terms j3U,U,, - U, - ~ K U ,  that determine U,. In what 
follows, little use is made of this second family, since it exists only for the case E = 0. 
Instead, we concentrate on the family (50). 

From our leading-order analysis for the family (50) we can conclude immediately that 
when E = 0, for any 1 # fi  > 0, our equation does not have the Painlev6 property because 
we have a maximal family With non-integer leading-order exponent. Thus, for example, RH 
has the family 

28 (53) 
R = (-2,  -1, -28) .  

p = 1 2 U0 &U] = uu,, + 3u,u,, U = -2 R = [-1,O, 1) (54) 

and so does not pass the Painlev6 PDE test. However, RH does admit a so-called 'weak 
Painlev6' [27J expansion 

j=O 

where U0 and U1 are arbitrary. Unfortunately this tells us little about the integrability or 
otherwise of RH, since the (integable) Dym equation and the (non-integrable) 'cubic MV' 
equation both admit such weak Painlev6 expansions [28,29]. However, if we consider the 
second family (53) of RH (note that all indices are negative), 

(56) 

we find, using the extended test developed in [24], failed compatibility conditions at first- 
order of perturbation. Thus RH also exhibits logarithmic branching, which is a stronger 
indication of non-integrability, 

In the case E # 0 the condition for dominance (52) is much more restrictive and means, 
for example, that for CH and FW (B = 2 and f3 = 3 respectively) we are unable to build 
a Painlev6 expansion of the form (46) since the terms &U] are not dominant. However, 
it is possible-in a manner analogous to that used in the weak Painlev6 analysis of ODES, 
see for example [3O]-to overcome this problem and increase the range of values of 8 for 
which the PDE test can be applied. 

k[UI = vu,, + 3uxux, - ut *' p = 2  WO=- 
6 

U = 1 R = [ -6 ,  -2, -1) 

In (1) we set U = V - ~v(t) to obtain 

We now consider a leading-order analysis of this equation for the same dominant terms 
K[V] = VV,,, + pV,V,,. When V has leading-order exponent p, the leading-order 
exponent of the combination (V',, - @'V',) is in fact p - ~ 2  and not p - 3. Therefore 
when seeking a Painlev6 expansion for V in the case E # 0 we obtain different conditions 
for k [ V ]  to dominate over the right-hand side: 

E # O  B < - l o r j 3 > 1 .  (58) 
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This means that for equation (1) with 6 # 0 we can seek a Painlev6 expansion in the 
form 

m 

u = --E*'@) + f$P(X, t )  U j ( t ) f $ j ( X ,  2 )  
j=O 

(59) 

having the conditions for dominance (58). For @ =z -1 we already know that we do not 
need to include the extra term -c+'; indeed in this case, since p e 0, this term can be 
absorbed into the sum in (59). It is for ,!I z 1 that the above modification is useful; since 
then p 

This then allows us to conclude that for E # 0 and any ,!I > 1-and in particular for CH 
and FW-OUI equation does not have the Painlev6 property. However, both CH and FW do 
admit weak Painlev6 expansions which are, respectively, 

0, what we have done is to include an extra lower-order term in the expansion. 

m 

where U0 and U2/3 are arbitrary and 
m 

U = -@'(t) + f$'/Z(X, t )  1 Uj /Z ( t ) f$ j 'Z (X ,  t )  (61) 
j=O 

where U0 and U, are arbitrary. Since CH is integrable, and so might be expected to have 
the full Painlevd property, our analysis confirms the limitations of the Painlev6 test when 
applied to fully nonlinear PDES. 

For @ < -1 we can apply the PDE test for the family (50), without including an extra 
term in the expansion, for any value of E .  Asking that the leading-order exponent p be 
integer N (f 0). so @ = 2/N - 1, we can rewrite the family (50) as 

p = N  U, k [ U ]  = uu,, - (1 - ;) u,u,, 
(62) 

u = 2 N - 3  R ={-1,0,2-2N). 

We have applied the PDE test for this family to equation (1) with ,!I = 2 /N  - 1, 
N = -1, . . . , -10. We found that when such N are even, the corresponding equation 
passes the PDE test, whereas for N = -(2n + l), n = 0, . . . , 4  the compatibility condition 
at r = 4(n + 1 )  requires 

(63) 2n p uo, = 0. 

All compatibility conditions are required to be satisfied without any restriction being placed 
on the arbitrary function UO. Thus for N = -1 (n = 0) the equation fails the PDE test, 
whereas for N = -3, -5, -7, -9 we must have p = 0. We expect this pattem of passing 
for N even, or requiring p = 0 for N odd, to continue for other negative integer leading- 
orders. 

4.3. Application of the Painlevd ODE test 

In this section we consider the application of the ARS Painlev6 test for complete integrability, 
and so are interested in the Painlevd property of reductions to ODES. We begin with the 
travelling-wave reduction 

U ( x ,  t )  = F ( f )  + EC 5 = x - C t  (64) 
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which, we recall, gives 

with Az, AI and Ao given by (27), (28) and (29) earlier. 
We prefer to consider a Painlev6 analysis of equation (65) rather than of the first-order 

equation (30). since the former has polynomial form. Whilst it is true that if the right-hand 
side of (30) is rational, then in order to have the Painlevt property it must in fact be a 
polynomial of degree not exceeding 4 (see for example 1311 pp 418-9), to use this result 
requires an assumption that ,9 is integer. There are equations of the form (30) with solutions 
free of movable branch points but j3 rational, for example A0 = 0 and j3 = -1/2. 

Remark. This result, that for (30) to have the Painlev6 property when j3 is integer, the 
left-hand side must he polynomial of degree < 4, excludes the consideration of limiting 
solutions such as (6) and (7). since in Painlev6 analysis we deal only with irreducible 
equations. In fact, these limiting solutions of the form e-”kI, U # 0, although perfectly 
single-valued, are nowhere differentiable, with respect to complex z. 

Another reason for using (65) rather than (30) is that it falls into the class of~second- 
order ODES studied by Painlev6 and Gambier [16,17,321. and later by Bureau 1331. We 
can, therefore, use these classifications to give all ODES of the form (65) which have the 
Painlevt property. Throughout this section we also make use of the or-method. 

We find four PDEs which have travelling-wave reductions that have the Painlev6 property. 
One of these fails the Painlev6 PDE test; for the remaining three we are able to undertake 
a further analysis using the reductions (44) and (45). Again, use is made of the a-method, 
this being more generally applicable than the ARS algorithm. 

In equation (65) it should be noted that A0 depends on the arbitrary constant of 
integration A, and so if we require that the general solution of the third-order ODE resulting 
from the travelling-wave reduction has the Painlev6 property (i.e. for arbitrary A),  then 
we must insist that Ao is entirely arbitrary. Therefore, when looking for equations of 
the form (65) with the Painlev6 property we assume that A0 is non-zero, since otherwise 
such equations correspond only to the classes of particular solutions of the travelling-wave 
reduction. We make this assumption A0 # 0 in all that follows. Note also that a constraint 
on Ao-for exampIe Ao = W o e s  not provide us with any information about the parameters 
in our original m ~ .  

4.3.1. Travelling-wave reductions with the Puinlev6properry We begin by considering the 
application of the or-method to equation (65). This means making a change of variables 
depending on a parameter 01 such that the resulting system is equivalent to the original for 
all or # 0, and such that the resulting expression for FFI is analytic at or = 0. A solution 
of the resulting ODE is then sought as a Taylor series in a; the necessary conditions for 
the Painlev6 property are obtained by requiring sinzlle-valuedness of each coefficient in this 
Taylor series. In particular, the solution of the ‘simplified equation’, obtained by setting 
or = 0 in the transformed equation, must be single-valued. 

In (65) we make the change of variables 

5 = 50+orT (66) 

FFCt = -+(+9- 1 ) F ~ + o r 2 ( A z F Z + A ~ F + A ~ ) .  (67) 

to obtain 
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Then, seeking a solution of (67) as 

C Gilson and A Picketing 

which has the general solution 

b=-1 Fo(() = CeDr (70) 

b # -1 Fo(() = C(< + D ) k  (71) 
where C and D are arbitrary constants. 

We thus have the first necessary conditions [I61 for (65) to have the Painlev.5 property: 
either p = -1  or 2 / (p  + 1) = N for some non-zero integer N .  This then means that 
for any 1 # p > 0, and for any value of E ,  the Isavelling-wave reduction of (1) does not 
have the Painlev6 property. This is, therefore, true of our three examples CH, FW and RH 
(the travelling-wave reduction of FW has previously been considered by McLeod and Olver 
[34]). Of course, for these three examples, we have already shown the existence of such 
branching at the PDE level. 

Let us now continue to determine which equations of the form (65)-with A0 # 0.40 
have the Painlev6 property. In doing so we will make use of the known classifications of 
second-order ODES [16,17,32,33]. The results of the Painlev6Gambier classification may 
be found in Ince 1351, although with many WIMS and omissions now corrected by Cosgrove 
[36] (useful comments can also be found in [37]). Some care bas to be taken in making 
use of these classifcations, since they are classifications of canonical equations, i.e. up to 
transformations under the Mobius group 

where h(t)po(g) - p ( f ) h ~ ( t )  # 0 and q( t )  is non-constant. 
For p = -1 we know from (31) that the travelling-wave reduction does have the 

Painlev6 property (in fact the general solution of (31) is analytic). We therefore obtain the 
following. 

Equation ( I )  with fl = -1. The corresponding PDE is not Galilean invariant and so we may 
use the fxansformation (40) to set K = 0. This then gives 

uu,, - u*u,, = U, - €Uxx*. 

We now consider equation (65) for p = 2 / N  - 1 ( N  non-zero integer): 

First we take the choices N = zkl (equations of type I in the classification [35]). 
For N = 1 (p = 1) we obtain 

1 
Ftg = A2F + A1 + Ao-. F 

Employing the ry-method with 

F = u H  ~ = ( O + L Y {  
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we obtain the simplified equation 

(77) 

 further^ applications of the a-method show that a necessary condition for (77) to have the 
Painlev6 property (as a second-order ODE) is AO = ~ O  (see [331 pp 247-8 or [I61 pp 218-9). 
Since we are insisting that the constant of integration A is arbitrary, we discard this example. 

For N = -1 (p = -3), we can see immediately from (30) that the travelling-wave 
reduction has the Painlev6 property, since for this value of p the general solution of (30) is 
expressed in terms of elliptic functions. This is our second case. 

Equation (2) with ,9 = -3 ( N  = -1). 

1 
H Hrt = Ao-. 

- 3uxuxz 2p2uuz = ut - €Uxxr + 2KUx. (78) 

However, as remarked earlier, this equation fails the PainlevC PDE test. 

We now consider equation (74) for N = *2, &3, W, . . . , i.e.~ equations of type lII 
(the first complete discussion of which was given by Gambier [38,39]). Using the lists of 
canonical equations of type III in [35,36], we are able to complete our list of travelling- 
wave reductions with the Painlevt property; there are two further examples to be given. 
Remember that we are imposing the constraint A0 # 0. 

Our first example of an equation of type HI is for N = 2 @ = 0) and AI  = 0 

which for A0 # 0 appears in the classification as 

This is a particular case of equation (XXVII) in [35], the case 
N = 2 it is equivalent to (xXXII) in [35]. Equations (79) and (80) are equivalent under a 
transformation of the form (72). 

The extra constraint A1 = 0 is in fact relatively simple to derive. Let us return to our 
application of the a-method to equation (65)-and so making the transformation (66) to 
obtain (67)4n the particular case p = 0. I t  is sufficient to take for FO and Fr in (68) the 
particular solutions 

lled (XxvIIa) in [36]. 

Fo(0  = (t + 0)’ 4 (C) = 0. (81) 

The equation for Fz then reads 

which has the particular integral 

Fz(<) = a&(< + D)4 + Ai(< + D)2[10g(< + D )  - 11 + 4Ao. (83) 

It then follows that a necessiuy condition for the absence of movable logarithmic branching 
when B = 0 is that A1 = 0; the sufficiency of this condition is clear from (32). which in 
fact has an analytic general solution when A1 = 0. 

Thus we have our third equation. 
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Equation (3) ,3 = 0 ( N  = 2). AI = 0. The condition A1 = 0 could be used to determine the 
wave speed c, but to have the travelling-wave reduction having the Painlev6 property only 
for a fixed wave speed would not be very interesting. In  fact, in this case-which requires 
epz # 1-the PDE is not Galilean invariant and so can be transformed onto an equation 
having K = 0; then we are left only with an equation with a stationary flow that has the 
Painlev6 property. If we require that the condition A1 = 0 holds for arbitrary wave speed 
then we must have cp2 = 1 (Galilean invariance) and K = 0. This then gives, for ,3 = 0 
( N  = 2), €pz  = 1, K = 0, 

C Gilson and A Pickering 

(84) 
1 

UlJ,,, - pzuu, =U, - -Uxx*. 
P2 

Here we may rescale p 2  = 1. 

Our second example of an equation of type IJI 1351 is, for N = -2 (,3 = -2), 

for which when A0 # 0 the corresponding canonical equation is 

1 G2 
‘ “ - 2 G  

G - -2 + 3G3+ BIG’+ BzG 

a particular case of (m) in [35]. Equations (85) and (86) are equivalent under a 
transformation of the form (721, BI and BZ being given in terms of Ao, A I  and Az. That 
(85) has the Painlev6 property is easy to see from (30). which in the case f l  = -2 has a 
general solution expressible in terms of elliptic functions. 

We then obtain our fourth example of a PDE of the form (l), the travelling-wave reduction 
of which has the Painlev6 property. 

Equation (4) with p = -2 (N = ~-2). 

We recall that this equation also passes the Painlev6 PDE test for the family (50). 

4.3.2. Further analysis: other similarity reductions Of the four PDES listed above two have 
K = 0 and so we are also able to consider the reduction (44) 

U~ZX.X - 2uzUxx -b p2uux = ut - EU,t +2Ku,. (87) 

corresponding to the scaling symmetry (43). 
For equation (73) this reduction gives the ODE 

Applying the a-method with 
V=a-’w x=yo+a- ’y  

WW,, - wywyy + w = 0. 
gives the simplified equation 

This has the family (note the positive leading-order exponent) 

p = 3  
u = 3  R = { - 1 , - 1 * t }  (92) 

WO = 1 12 k[WI = WW,, - wyw,+ w 
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and so the reduction (89) does not have the Painlev6 property @muse of the non-integer 
indices of the family (92)). 

For equation (84), after rescaling p 2  = 1, the reduction (88) gives the ODE 

vv,, - VV, + v - v,, = 0. 

v = u w  x=yo+LTy 

w wyyy - w,, = 0 

Applying the a-method with 

gives the simplified equation 

which integrates to 

WW, - iW,” - W, - E = 0. 

Applying the a-method again with 

w = a-’z 

ZZ,, - = aZ, +aZE. 

gives 

Seeking a solution as 
m 

z = Zj(Y)Qj 
j=O 

we take for ZO the particular solution 

ZO(Y) = (Y + D)* 
the equation for 21 then reads 

which has the particular integral 

z1 ( Y )  = -2(y + D )  (1 + log(y + D ) )  . 
Thus (93) does not have the Painlev6 property. 

So (73) and (84) both fail the ARS Painlev6 test. Since (78) fails the Painlev6 FDE test, 
we are. then left only with equation (87). It is this remaining equation that we now consider. 

Since when (87) is not Galilean invariant we may set K = 0, we need consider only the 
following two cases: (i) K = 0 and (ii) K # 0 and Galilean invariant, i.e. ep2 + 1 = 0. We 
take these two cases in tum. 

For the first case we can again study the reduction (88), which gives 

vv,, - 2v,v, + pzvv, + v - €VXX = 0. (103) 
Applying the a-method with 

v=ffw x = y o + a y  
gives the simplified equation 

wwyyy-2wywy,-€wyy =.o (105) 
which integrates to 

WW, - ;W,” - €Wy + E = 0. (106) 
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The transformation W = 1/Z then brings this to the canonical form 

C Cilson and A Pickering 

12; z - - - + G ~ z , + E z ~ .  
" - 2 2  (107) 

The only case of the above in which the constant of integration E is allowed to be entirely 
arbitrary is when E = 0 (see [35], p 336). Thus we have K = E = 0. 

We can then consider the Painlev6 PDE test for the second family (53): 

(108) 

We find that the compatibility condition for the index at j = 4 is not identically satisfied 
for any p ;  thus the equation exhibits logarithmic branching. 

We are then left with the second case of equation (87). i.e. K # 0 and cp2 + 1 = 0. We 
may rescale to set K = 4, p z  = 1 and E = -1: 

uu,,, - 2u,u,, + uu, = U, + U,,, + U,. (109) 

U(x,t)=(2ut+b)+,W(z) z = x + ( a t 2 + b t + d )  (110) 

p = 2  U, = -Q' 4 &[U1 = uu,, -2u,v,, -U, 
o = l  R =(-2,-1,4]. 

Since this equation is Galilean invariant we can take the reduction (45) 

to obtain 

WW,,, - 2wzwz, + WW, = 2a + w,. (111) 
For a = 0 the reduction (110) is just the travelling-wave reduction (I%), which we h o w  
has the Painlev6 property. We therefore consider equation (111) for a # 0. 

The family corresponding to (50) passes the Painlev6 test. However, in the case a # 0 
we also have the two families defined by 

p = 2 yw; +2a = 0 k[WI = ww,,, - 2w,w, - 2a 
(1 12) 

2 

o = o  R = { - l , V } .  

Since in (1 12) we have both leading-order exponent and indices non-integer, it follows that 
if we take a reduction (1 10) with a # 0 we obtain an ODE which does not have the Painlev6 
property. 

Thus our Painlevt5 analysis leads us to discard all equations of the form (1). 

5. Conclusions 

We noted that the limiting solutions to equations of the form (1) are, away from 
discontinuities in their derivatives, no more than the solutions of a linear equation. We 
have shown how this linear equation arises as a 'factor' in the travelling-wave reduction. 
For some examples we are able to give a far more striking factorization at the PDE level. 
These methods also allow us to write down classes of solutions to the equation considered. 

In addition, we have considered the Painlev6 analysis of (1). A combination of the PDE 
test and the ARS test of reductions to ODES forces us to discard all equations in the class 
considered. 

We also found that by including an extra lower-order term in the Painlev6 expansion 
when the leading-order exponent is positive, we could extend the class of equations to 
which this test may be applied. In this way both CH and FW can be shown to possess only 
the 'weak Painlev& property. Since CH is known to be integrable, this then confirm the 
limitations of the Painlev6 test when applied to fully nonlinear PDEs. We should remember, 
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of course, that those proofs that integrable PDEs have the Painlev6 property which have 
been given-see for example [34]-make certain assumptions about the scattering problem 
involved, and also that it is for the functional Q[U] recovered from inverse scattering that 
meromorphy has been shown, and then only for those solutions-U satisfying conditions on 
initial data which allow the inverse scattering formalism to go through. 

An alternative approach might be to ask whether it is possible to transform CH onto an 
equation which passes the Painlev6 test. This is the approach advocated in [40]. Indeed 
such a transformation, onto the first negative flow of the KdV hierarchy, has been given [41]. 
However, in deriving this @ansformation use was made of the (spatial pm'of the) Lax pair 
of CH. One can, therefore, imagine that given any partial differential equation the question 
of, whether such a transformation can be found may not always be quite so tractable. In 
practice, of course, one would like a method of testing any given equation directly. The 
question which remains to be answered is: how many other equations in the class (1) are 
actually integrable but in their Painlev6 analysis exhibit similar behaviour to CH? 
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